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Disclaimer

• This presentation reflects the views of the 
presenters and should not be construed to 
represent FDA’s views or policies.
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Outline (Part I) 
• Motivational examples  (Huque)
• Modern confirmatory controlled clinical trials 

(Huque)
– What is different about these trials?
– Types of multiplicity problems one generally 

encounters in these trials
• The FDA draft guidance on multiple endpoints 

(Kathy Fritsch)
– Key concepts and principles 

• Concluding Remarks (Kathy Fritsch)
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Outline Part II  (Huque)
• Statistical methods (addressed in the draft)

– Traditional methods
– Methods based on the concepts of alpha lost and 

alpha saved
• Additional topics

– Design and analysis issues for composite endpoint 
trials

– Sample size issues for co-primary endpoint trials
– Subgroup analyses issues for confirmatory trials 
– Closed testing and partitioning methods for solving 

multiplicity issues of clinical trials
• Final Remarks



Some recent works on the topic
 FDA draft guidance on “multiple endpoints in clinical 

trials,” 2014 (to be released soon for public comments)
• Huque MF, Dmitrienko A, and D’Agostino RB. Multiplicity 

issues in clinical trials with multiple objectives. Statistics in 
Biopharmaceutical Research 2013 (November)

• Alosh, M; Bretz, F; Huque, MF. Recent advances in 
addressing multiplicity issues in clinical trials. Statistics in 
Medicine 2013  

• Dmitrienko A, D’Agostino RB, and Huque MF.  Key 
multiplicity issues in clinical drug development, Statistics in 
Medicine 2013;  32: 1079 –1111

• Dmitrienko A, D’Agostino, RB. Traditional multiplicity 
adjustment methods in clinical trials. Statistics in Medicine 
2013 
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Two books and an European points to 
consider document

• Multiple Testing Problems in Pharmaceutical Statistics -
2009

Editors: A. Dmitrienko, A. C. Tamhane, and F. Bretz. 
Published by Chapman, and Hall/CRC Press, New York 
Chapter 1: Multiplicity Problems in Clinical Trials. A 
Regulatory Perspective (by Huque MF, and Röhmel J) 

• Multiple Comparison Using R - 2010
by Bretz, F., Hothorn, T., and Westfall, P; Published by 
CRC Press, New York

• CPMP/EWP/908/99. “Points to Consider on Multiplicity 
Issues in Clinical Trials,”
– Available at 

http://www.emea.eu.int/pdfs/human/ewp/090899en.pdf
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Dr. Carefree is climbing up the 
mountain … 
He is using a rope that has multiple 
knots

Picture from a presentation by Franz Koenig (DIA/EMA Conference 2011, London)



Knots 1 2 3 4 5 50
Prob. 0.05 0.10 0.14 0.19 0.23 0.92
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Problem: 
Each knot can break with a probability of 5%. Guess 
the probability of falling down the mountain! 
Is it 0% or 5% or is it more?

Multiplicity! 
Similar problems and challenges arise when 
testing multiple endpoints (or multiple 
hypotheses)!!!

Calculations by a statistician:



Consider a simulation experiment
• Simulate on the computer two-endpoint trials that 

compare a treatment to a control, with no treatment 
effects in any of the two endpoints. Simulate one 
million times. 
– One would find that about one-hundred-thousand trials 

(10%) conclude  treatment effects on observing  p-values < 
0.05 for at least one of the two endpoints 

• These are false positives (or Type I errors) that occur 
by the play of chance alone in the absence of any 
treatment effect.
– The proportion increases with the number of endpoint (or 

hypotheses) tested

• This phenomenon in testing multiple endpoints (or 
multiple hypotheses) is known as the inflation of the 
false +ve error rate or the Type I error rate
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Probability of false significant treatment effect 
findings (Type I error) in a trial can be very high

• When analyzing many endpoints and subgroups each at 
significance level of 0.05
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Multiplicity and Dr. Carefree!
• Remember Dr. Carefree!
• Using the language of hypothesis testing, the 

problem is when carrying out more and more 
(=multiple) tests, the probability of making at 
least one type I error increases.

• This probability of at least one type I error in 
testing a family of null hypotheses is sometimes 
referred as the family-wise error rate (FWER).



Consider two different clinical trial 
situations 

• Situation A:  Looking for a significant p-value (P < 
.05) for a pre-specified single primary endpoint out of 
say 10 proposed multiple endpoints 

• Situation B: Looking for a significant p-value for any 
of the 10 endpoints
– Probability of finding a significant p-value (P <0.05) in this 

case by chance is much greater than that in B
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Sometimes one sees the following

• The trial has a single primary enpoint, but has 
many secondary endpoints – often as large as 
10 

• All alpha (e.g., 0.05) is spent on the test for the 
primary objective.
– If win, then test each secondary endpoint at alpha of 

0.05 for significance – statistically problematic
– If failed, then still try to make the case for treatment 

effect for a secondary endpoint if that endpoint 
appears clinically meaningful with p-value < 0.05 or 
smaller – statistically problematic
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Carvedilol example in CHF patients

• Pivotal trials failed on the PE (improvement in ability to 
exercise). 
– All alpha was lost on the PE, but the drug was 

approved for the mortality benefit after two AC 
meetings

– Mortality endpoint was not the specified PE in the 
confirmatory trials evaluated   

• Two articles with opposite views: 
– Fisher LD. Carvedilol and the Food and Drug Administration 

(FDA) approval process: the FDA paradigm and reflections upon 
hypothesis testing. Cont. Clin. Trials 1999; 20:16–39

– Moye´ L. Endpoint interpretation in clinical trials: the case for 
discipline. Cont. Clin Trials 1999; 20:40–49
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Why Problematic?
Example 1 (Dmitrienko, D’Agostino, and Huque 2013)

• Consider treatment-to-control comparisons on 3 
endpoints:
– A is primary and B and C are secondary
– Test strategy:  (1) test A at level 0.05; (2) if the test for 

A is significant, then test B and C each at level 0.05
• Under the global null hypothesis of no treatment effects 

in any endpoint:
– The probability of erroneously concluding treatment 

effect in any endpoint =  0.05. Why? 
– Endpoints B and C are tested only if endpoint A is 

significant at level 0.05 which renders the size of error 
rate for secondary endpoints not to exceed 0.05

• Why is it then a problem?
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Example 1 (cont’d)
• The previous calculation focused only on one null 

hypothesis configuration of true and false null 
hypotheses 

• Doing this can lead to a substantial underreporting 
of true error rate!!!

• For example, consider the configuration:
– The null hypothesis for A is false but those for B and 

C are true
– Then the error rate can be as high as 1 − (1 − 0.05)2

= 0.097 (assuming tests are independent)
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Ex2: Test PEs A and B, each at level 0.025, if win in one 
of them, then tests the secondary endpoint C at level 0.05
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A
Effect
0.025

B 
No Effect
0.025

C 
No Effect
0.05

No type I 
error in 
concluding 
A as 
significant 

type I error 
rate of 0.025 
in concluding 
B as 
significant

Type I error 
rate of 0.05 
in testing C

Error rate as large as:
1 – (1- 0.025) x (1- 0.05) 
= 0.07375

Primary endpoints Secondary endpoint

(Bonferroni tests)

Inflation

Huque et al. (2013; SBR)



Modern (confirmatory) clinical trials

• Include multiple objectives:
– One primary objective and multiple secondary 

objectives.
– Multiple primary objectives and multiple secondary 

objectives.
• Provide opportunities for winning for multiple  

treatment benefit claims in the same trial.
• Use novel statistical concepts and methods that 

save some or all of trial alpha (α) once the trial 
wins on the primary objective(s). 
– This saved alpha is then used for secondary 

objectives.
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Modern trials face “multiplicity” issues

• Comparing treatments for more than one 
endpoint 

• Comparing several doses of a drug to a control 
• Comparing a treatment to control for non-

inferiority and for superiority on each of several 
endpoints and at several doses

• Comparing treatments on multiple primary and 
secondary endpoints

(Cont’d)
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Modern trials face “multiplicity” issues

• Analyzing a composite primary endpoint for claiming 
treatment benefits for the composite as well as for one or 
more of its components  

• Analyzing for a win either for the total population or for a 
targeted subgroup

• Conducting Interim analysis 
• Making design modifications
• Etc. 
• A complex trial design may combine some or more 

of the above posing a complex multiplicity problem
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Multiplicity problems encountered in 
these trials are generally of two types

• Unidimensional multiplicity problems
– Multiple objectives considered in a clinical trial 

can be placed in a single family; in other 
words, they represent the same source of 
multiplicity 

• Multidimensional multiplicity problems
– Advanced multiplicity problems: or problems 

with several sources of multiplicity
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Unidimensional multiplicity problems
• Case example 1: 

– The efficacy profile of a single dose (in comparison to 
placebo) of a new treatment is evaluated on two (2) 
endpoints

• Case example  2: 
– Three (3) doses of a new treatment are tested versus 

a common control (e.g., placebo) on a single endpoint
• Case example 3:

– A single-primary endpoint trial compares a single 
dose of the treatment to control for the overall patient 
populations as well as for a prospectively defined 
subpopulation
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Multidimensional multiplicity problems
• Case example 4: 

o The efficacy profile of new treatment versus a 
control is to be evaluated at two different dose 
levels on two primary endpoints and on two 
secondary endpoints. (w. logical restrictions)
Examples of logical restrictions:  
1) If a dose is found ineffective for any of the primary 

endpoints then it can not be tested for a secondary 
endpoint. 

2) Considered that a primary endpoint is paired to a 
secondary endpoint as (PE1, SE1). If a dose is 
found ineffective for  PE1 then it can not be tested 
for SE1.
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Multidimensional multiplicity problems 
(cont’d)

• Case example 5:
o A trial compares a treatment to control on two 

primary endpoints (E1 and E2) to determine 
first that the treatment is non-inferior (NI) to 
control on endpoint E1. The analytic plan is as 
follows: 
1) Test E2 only after NI for E1 is first established
2) Test for superiority on an endpoint only after NI 

for that endpoint is first established
o Dimensionality of the problem increases if the 

trial is a multi-dose trial.
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Win on at least 
one PE 

Win on all
PEs

•Alpha adj : YES
•Impacts power 

•No alpha adj. 
•Low power

Win on 2 PEs from 
Column 1 and on 1
PE from column 2

Win by testing 
in sequence

No alpha
Adj, 

Trial designs also come with different 
efficacy win criteria

Win on a single
specified
Primary E



Good News – Statistical approaches are 
available for addressing multiplicity

• Last decade has witnessed a surge of research 
in the development of new methods for 
addressing multiplicity issues of clinical trials. 

• There has been remarkable innovations in 
statistical methodology in dealing with all sorts of 
multiplicity problems of clinical trials

• There are now many statistical approaches for 
addressing different aspects of multiplicity for 
improving scientific credibility and success of 
clinical trials.
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Last few years have witnessed new useful 
statistical methods on: 

• Methods that allow recycling of alpha from one family to the next
• Gatekeeping and tree-structured methods
• Graphical methods  
• Hybrid methods (e.g., combining the Bonferroni and Holm’s 

critical values)
• Computation of adjusted p-values for any complex hierarchical 

testing method, e.g., for gatekeeping testing schemes
• The fallback and adaptive alpha allocation approaches (the 4A)
• “Partitioning principle” based test strategies
• Methods for planned subgroup analysis
• Consistency ensured (adaptive) methods 
• Others (e.g., related to interim analyses and adaptive designs)
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Good News
• The FDA on recognizing the importance of 

this topic has written draft guidance so that 
these methods can be applied for  
regulatory decision making  
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About this FDA draft guidance
• It is a unique document ever tried at the FDA, 

written by an FDA committee of  statistical and 
clinical experts.

• It is written in a non-technical language in order to 
reach a broad audience. 

• It includes concepts and methods that were written 
after much discussions and deliberations for 
bringing clarity  – that is why, it has taken some time 
to finish it.
– Achievement: Key statistical methods are described 

in a way with illustrations that could also be easily 
understood by clinicians
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This draft has 5 sections

I. Introduction  

II. Introductory concepts and principles

III. Multiple endpoints: general principles

IV. Statistical concepts, methods and principles

V. Supportive descriptive statistics and graphs

References

Appendix
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Scope 

• Multiplicity topics addressed are mostly related 
to adequate and well-controlled studies.

• Some multiplicity topics are beyond the scope 
of this Guidance. For example, following topics 
are not addressed. 

– Safety

– Subgroup analyses

– Sequential/adaptive designs
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Illustrative examples 

• Includes illustrative examples related to methods 
that apply to multiple endpoints.

• Emphasizes that these methods also apply to 
other situations, such as to different doses, time 
points, and study population subsets
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Includes a number of stat methods w. 
illustrative examples

• Bonferroni Method
• Holm Procedure
• Hochberg Procedure
• Fixed Sequence 

Method
• Modified Fixed 

Sequence method
• Gatekeeping Testing 

Strategies

• Truncated Holm 
Procedure for Parallel 
Gatekeeping

• Multi-branched (Tree-
structured) 
Gatekeeping 
Procedures

• Resampling Based 
Multiple Testing 
Procedures

• Graphical method
Huque 2014 33



Addresses a number of multiplicity 
topics and issues including

• Primary and secondary endpoints
• Multiplicity and its extent
• False positive error rate and its control
• Prospectively planned and post-hoc analyses
• Co-primary endpoints and issues
• Composite and multi-component endpoints 

and issues
• Descriptive statistics and graphs for labeling
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Defines and explains endpoint families

• Primary endpoints
– Endpoint(s) necessary and/or sufficient to 

establish efficacy (define a successful trial)
• Secondary endpoints

– Not sufficient to establish efficacy in the absence 
of an effect on the primary endpoints; not required 
for establishing efficacy 

– Potentially could lead to additional labeling claims
• Exploratory endpoints

– Hypothesis generating (clinical utility unknown)
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Defines and explains “multiplicity” 
• Multiplicity refers to situations in a trial in which 

multiple statistical tests or analyses create 
multiple ways to “win” for treatment efficacy or 
safety.   
– This can cause the false positive error rate (Type 

I error rate) to inflate beyond the desired level, e.g., 
0.05, if each test is performed, for example, at the 
same alpha level of 0.05. 

• This inflation in a trial can be substantial and 
problematic, but  

it can be controlled to a desired level by an 
appropriate, prospectively planned statistical 
strategy using the statistical framework of 
testing multiple hypotheses. 

36



Explains when is it necessary to 
adjust for multiplicity?

• When there are one or more claims of treatment 
benefits based on primary and secondary 
endpoints. 

• When the win criteria are such that one can win 
in multiple ways, i.e., there are multiple 
pathways for winning.  

Such situations require multiplicity adjustments 
when they cause inflation of the Type I error 
rate.
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Explains what is not multiplicity

• Often there are multiple analyses for the 
intention-to-treat (ITT) data set for the same PE 
and by the same method
– These multiple analyses are done for the same 

endpoint on varying the assumptions about some 
data points because of missing data, protocol 
violations, use of concomitant medications, etc.

• As these analyses are sensitivity analyses for 
assessing the primary analyses results, there is 
no multiplicity adjustment for them
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What is not multiplicity  (cont’d)
• Often there are analyses of the same endpoint data by 

alternative methods, e.g.,
– analysis of the same time-to-event endpoint by log-rank test and 

by the generalized Wilcoxon test
– analysis by the parametric and non-parmaetric methods.

• Technically, one can adjust for these multiple analyses if 
they were pre-specified.

• However, this is rarely done, as the purpose of these 
analyses is usually to demonstrate that the results found 
are robust and hold regardless of different methods 
applied.
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What is not multiplicity (cont’d)
• The Draft Guidance considers descriptive analyses 

and graphs that go into the labeling as being “not 
multiplicity” – Section V of the document is devoted to 
this topic.

• These analyses are supposed to be further 
elaborations of effecs that has been established in a 
statistically rigorous way.

• Caution: These analyses should be recognized as 
insufficient to justify additional drug efficacy 
claims beyond those supported by the 
prospective analyses.
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Considers error rate control for the primary 
and secondary families of hypotheses

FDA | 2012 41

Exploratory 
Endpoints

(Supportive 
descriptive 

info)

Continuum for Type I Error Control

Secondary
Endpoints 
(Labeling 

claims)

Primary 
Endpoints 
(Indication)

→To all primary and secondary endpoints
→Overall error rate should not exceed a pre-specified α
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Recommendations on stat methods for 
controlling the Type I error rate

• Methods generally used for the primary and secondary 
endpoints should be those that allow finding of significant 
treatment effects at the individual endpoint level, without 
inflating the Type I error rate 

• These methods permit an individual conclusion about 
efficacy with respect to each endpoint tested in the 
primary and the secondary family 

• Some methods (often called global procedures) 
allow a conclusion of treatment efficacy in the global 
sense. Such methods generally inflate the Type I 
error rate for making conclusions on the individual 
endpoints. 

42



Emphasizes prospective planning as 
a key to addressing multiplicity

• An important component in controlling for multiple 
comparisons is to specify in the protocol all planned 
study endpoints, time points, subgroups, and 
analyses in advance.

• Changes in the analysis plan to perform non-
prospectively stated analyses can reintroduce a 
multiplicity problem
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Explains pitfalls of post-hoc 
analyses

• Although post-hoc analyses of trials that fail on their 
specified endpoints may be useful for generating 
hypotheses for future testing, they do not yield definitive 
results.  

• The results of such analyses can be biased, as the 
choice of analyses surely can be influenced by a desire 
for success. 

• It is difficult to confirm how many different analyses were 
performed; in this situation, there is no credible way to 
correct for the multiplicity of multiple analyses and 
control theType I error rate. 

• Consequently, post hoc analyses generally do not 
provide evidence of effectiveness.
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Explains when in clinical trials 
co-primary endpoints are used 

• Situation 1: When there are two or more critically 
important different features of a disorder 
– These features are so critically important to the disease 

that a drug will not be considered effective without 
demonstration of a treatment effect on all these disease 
features. 

• Example: 
– Migraine headaches are characterized by the presence of 

pain, photophobia, phonophobia, and nausea. 
– A treatment is considered effective for migraines if all four 

aspects of the disorder are shown to be improved by the 
drug treatment.
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Co-primary endpoints (cont’d) 
• Situation 2:

– When there is a single identified critical feature of the 
disorder, but there is no single patient evaluation that 
is both specific for the disease feature and is clinically 
interpretable.

– In these cases, two endpoints are often used. 
• Example:

– Alzheimer’s disease trial with endpoints: ADAS-Cog 
and a global measure of function (e.g., global 
assessment)

– One endpoint assures that the effects occurs on the 
core disease feature, and the other that the effect is 
clinically meaningful.
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Statistical considerations for co-
primary endpoints

• When using co-primary endpoints, testing each  
individual endpoint at the 0.05 level does not cause 
inflation of the Type I error rate,
– rather the impact of co-primary endpoint testing is on 

the Type II error rate.”
• In general, unless clinically very important, the use of 

more than two co-primary endpoints should be carefully 
considered because of the loss of power.

• Relaxation of alpha is not generally acceptable 
because doing so will undermine the unequivocal 
demonstration of an effect on each disease aspect 
considered essential for showing that the drug has 
the desired effect. Huque 2014 47



Gives an idea of creating a single endpoint 
from multiple co-primary endpoints 

• Idea: A successfully treated patient will be that who 
improves on all the identified necessary endpoints.

• For this, each of the endpoints can be made 
dichotomous by applying the specified threshold for 
improvement.

• This can allow classifying patients as responders 
versus non-responders, and a primary endpoint might 
be formulated to compare the proportion of responders 
in each group.
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Addresses composite and multi-
component endpoint issues in detail

(some key points:)
• A common approach in practice has been to combine 

multiple endpoints (called components) to a single 
composite (or a single multi-component endpoint) when
– components individually are expected to yield small 

treatment effects, but collectively they can show a clinically 
meaningful benefit.

• Such an approach can effectively reduce the size of the 
trial if components contribute to the total treatment effect 
in a meaningful way.

• If individual components were tested simultaneously 
(e.g., by the Bonferroni test), when expecting only small 
treatment effects in each, then such an approach would 
not be practical.   Huque 2014 49



Interpretation of the composite 
endpoint findings

• The treatment effect on the composite describes 
the overall clinical effect of the treatment when
– components all are of reasonably similar clinical 

importance, and
– components exhibit some consistency of treatment 

effects.

• Interpretation difficulties arise when 
– the clinical importance of different components is 

substantially different, and
– the treatment effect is mainly on the least important 

component.
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Interpretation of the composite 
endpoint findings (cont’d)

• If a critical component (e.g., mortality) is adversely 
affected by the treatment, even if one or more 
components of less importance are favorably affected, 
so giving an overall favorable statistical result.

• Then, in that case, while the overall analysis indicates 
that the treatment is successful, careful examination 
of the data may call this conclusion into question.

 A key recommendation: For interpretation 
purposes, component endpoint data are to be 
fully displayed and carefully examined. 
(Draft Guidance addresses this issue in detail) 
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Multiplicity issues in composite 
endpoint trials

• There is no multiplicity issue if the trial has a single 
composite endpoint as the sole primary endpoint, and 
there no claim of treatment benefit for its specific 
components.  
– Component outcomes are analyzed and displayed only 

in the descriptive sense as an aid to interpreting the 
result of the composite endpoint.  

• Multiplicity issues arise when, for example,
– claims of treatment benefit are sought for the 

composite endpoint, as well as for its sub-
composites or for its individual components.

• Most of these multiplicity issues can be address by a 
variety of multiple testing methods (e.g., by 
gatekeeping and graphical methods)   
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Section V: Descriptive statistics and 
graphs for labeling

• These are to substantiate further the results of 
the primary and secondary objectives already 
established by rigorous statistical methods.

• Used, for example, for:
– showing treatment effects using histogram and 

cumulative distribution plots;
– checking consistency of results across patient 

subgroups by the use of forest plots.
• Cautions regarding their improper uses.
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Outline Part II  (Huque)
• Statistical methods (addressed in the draft)

– Traditional methods
– Methods based on the concepts of alpha lost and 

alpha saved
• Additional topics

– Design and analysis issues for trials with event type 
composite endpoints

– Sample size issues for co-primary endpoint trials
– Subgroup analyses issues for confirmatory trials 
– Closed testing and partitioning methods for solving 

multiplicity issues of clinical trials
• Final Remarks



Two types of multiple hypotheses 
testing problems 

• (1) Union-intersection testing problems
Given k multiple null hypotheses H1, H2, …, Hk to 
be tested against their corresponding alternative 
hypotheses  K1, K2, …, Kk

HI = ∩Hj is tested against  KU = UKj ; j =1, …, k
Comment:
Carrying out of the individual null hypotheses tests at an 
unadjusted nominal α level leads to an inflated 
probability of rejecting HI and can compromise the 
validity of the statistical inference. 
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Two types of multiple hypotheses 
testing problems (cont’d) 

• (2) Intersection-union testing problems
HU = UHj is tested against KI = ∩Kj ; j =1, …, k
Comments:
–No multiplicity adjustment is necessary for controlling 
the overall Type I error rate, but individual hypothesis 
can not be tested at levels higher than the nominal 
significance level of α.
–Application: testing of co-primary endpoints in clinical 
trials; e.g., Alzheimer’s trials require to show treatment 
effects on both the cognition and the global clinical 
endpoint
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Hybrid problems
• Example: Consider an epilepsy trial with primary 

endpoints: PE1 = seizure rate, PE2 = drop 
attack rate, and PE3 = seizure severity.  A win 
criterion may be the following:

– Show a beneficial effect either on PE1 or on both 
PE2 and PE3.

– Thus, PE2 and PE3 act as co-primary where PE1 is 
not co-primary.
Hh = H1∩(H2 U H3) versus Kh = K1U(K2 ∩ K3)

Question: Will the Type I error rate be controlled at 
level α,  if one tests H1 at level α/2, and tests each H2
and  H3 at level α/2?
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Classification of multiple testing procedures 
into single and multi-step procedures

• Single-step procedures (e.g., the Bonferroni 
method, ):
– Provide simultaneous testing and simultaneous 

(adjusted) confidence intervals for assessing the 
magnitude of the treatment effects.  They tend to 
cause loss of study power.  

– Are characterized by the fact that rejection or non-
rejection of a hypothesis does no depend on the 
decisions on the other hypotheses tested

– The order in which the hypotheses are tested is not 
important.
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Multi-step Procedures
– Generally more efficient, better preserving the power, but 

do not readily provide adjusted confidence intervals. (How 
about 1-sided confidence limits?) 

– Rejection or non-rejection of a null hypothesis may depend 
on the decisions on other hypotheses (example: Holm test)

• There are several kinds of multistep procedures, for 
example 
– step-down
– step-up, and 
– sequential procedures: Order of hypotheses to be 

tested are pre-specified as compared to determined by the 
data
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Step-down and step-up procedures
• Step-down procedures (e.g., Holm procedure):  

– One calculates the p-values from all tests to be considered at 
one time and starts with the smallest p-value and then steps-
down to the next smallest p-value and so on.  

• Step-up procedures (e.g., Hochberg procedure):
– One proceeds in the reverse direction.  That is, one starts with 

the largest p-value and steps-up to the second largest p-value, 
finally reaching the smallest p-value.  
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Bonferroni method
• The draft guidance introduces the un-weighted 

and weighted Bonferroni methods with examples 
• Recognizes the following: :

– The Bonferroni method tends to be conservative in 
controlling for the study overall Type I error rate if the 
number of endpoints (or hypotheses) tested is large or 
endpoints are strongly positively correlated.

– Consider a case of three endpoints:  All of three 
endpoints give nominal p-values between 0.025 and 
0.05, i.e., all ‘significant’ at the 0.05 level. Such an 
outcome seems intuitively to show effectiveness on all 
three endpoints. 

– However, the Bonferroni method will fail to declare any 
of these p-values as significant. 
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Bonferroni method (cont’d)

– When there are more than two endpoints (e.g., 5 
endpoints) with substantial correlation between them 
the true family-wide type I error rate may decrease 
from 0.05 to approximately 0.04 to 0.03 (when the 
correlation is 0.6 to 0.8)

– The Bonferroni method is assumption free - ideal 
for testing primary hypotheses when they are very 
few
Can be applied without being concerned about the 
endpoint types, their (joint) statistical distributions, and 
the type of correlation structure
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Holm and Hochberg tests
• Both uses the same alpha critical values but in 

different ways
• Consider k null hypotheses H1, H2, . . . , HK in a 

family with associated p-values of p1, p2, . . . , pK, 
and suppose that H(1), H(2), . . . , H(K) are the ordered 
null hypotheses corresponding to the ordered p-
values of p(1) ≤ p(2) ≤ . . . ≤ p(K). 

• In both the Holm and Hochberg tests, alpha critical 
values in testing null hypotheses are

c(i) = α/(K – i +1) for i = 1, . . . , K. 
e.g., for K =3, c(1) = α/3, c(2) = α/2, and c(3) = α
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Holm test with K =3

p(1) < α/3 H(1)

Yes
H(1), H(2),

H(3)

Reject Failed to reject
No

p(2) < α/2

Failed to reject

H(2), H(3)

No
H(2)

Reject
Yes

p(3) < αH(3)

Failed to reject
No

H(3)

Reject

Ordered p-values of p(1) ≤ p(2) ≤ p(3)
Associated hypotheses H(1), H(2), H(3)
Start from the top with the smallest p-value p(1) then step-down

Yes
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Holm test
• Assumption free - similar to Bonferroni test 

– But, ordering of hypotheses is data dependent.
– Uniformly, more powerful then the Bonferroni test

• Can reject more hypotheses than the Bonferroni 
test, e.g.,

K=3; p1 = 0.01, p2 = 0.024, p3 = 0.04
Only, one p-value of p1 = 0.01 significant at level 0.05 
by the Bonferroni test, but all significant by the Holm 
test 

• Still conservative: 
– E.g., none is significant at level 0.05 if K=3 and  

0.025 < (p1, p2, p3 ) < 0.05
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Hochberg test with K =3

p(1) < α/3 H(1)

Yes

H(1),

Failed to reject 
Reject

Yes

p(2) < α/2

Reject

H(1), H(2)

Yes
H(2)

Failed to reject

No

p(3) < αH(1), H(2),
H(3)

Reject

Yes
H(3)

Failed to reject

Ordered p-values of p(1) ≤ p(2) ≤ p(3)
Associated hypotheses H(1), H(2), H(3)

No

Start from the bottom with the largest p-value p(3) then step-up
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Hochberg procedure 
• Not assumption-free like the Bonferroni and Holm tests.

– It is known to provide adequate overall α-control for 
independent and for certain types of positively correlated 
tests (Sarkar and Chang, 1997; Sarkar, 1998), but its 
properties for other types of dependent endpoints are not 
fully known. 

– For 2-endpoint tests (i.e., testing for two null hypotheses): OK 
if test statistics follow bivariate normal density with positive 
correlation. This result follows from Example 1 given in 
Sarkar & Chang (1997) and also from the work of  Samuel-
Cahn (Biometrika 1996).

• Therefore, unless the Sarkar et al. conditions hold or 
the Type I error control is clearly demonstrated, the 
Hochberg procedure is generally not recommended for 
confirmatory trials.
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Comments: PAAS
• The PAAS (Moyé, 2000) is a single-step method

– Has a slight advantage in power over the Bonferroni
– Allows equal or unequal allocations, but, as with the 

Bonferroni, each specific endpoint must receive a 
prospective allocation of a specific amount of the 
overall alpha.  

– Alpha allocations are required to satisfy the equation:
(1 - α1)(1 – α2) …(1 – αk)  …  (1 – αm)  = (1- α)

• Caveat: The PAAS assures strong FWER 
control for all comparisons that are independent 
or positively correlated.
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Stat test strategies commonly use the 
concepts of “alpha saved” and “alpha lost”

• If an endpoint (or hypothesis) is tested at a level alpha 
(e.g.,  alpha = 0.025) and the p-value is significant at that 
level then that alpha of 0.025 is “saved” and can be 
accumulated to test a second prospectively specified 
endpoint (or hypothesis)

A B

α1 = 0.025 α2 = 0.025

This is basically the graphical representation of the Holm’s 
test for testing two endpoints 

1

1

Thus, if A is 
successful, then 
alpha at B is 
0.025 +1*0.025 
= 0.05
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A test strategy that does not require 
alpha-adjustments

A B

α1 = 0.05 α2 = 0

This test strategy is known as the fixed sequence test 
method

1 1 C

α3 = 0

If A is successful, alpha for B becomes 0 +1*0.05 = 0.05.
Then, if B is successful alpha for C is 0.05. But, if anytime, 
a test is not significant there is no further test
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Fixed sequence test strategy
• A fixed-sequence statistical strategy tests 

endpoints in a pre-defined fixed sequential 
order, all at the same significance level α (e.g., 
α = 0.05), moving to a second endpoint only
after a success on the previous endpoint.  

• Such a test procedure does not inflate the type 
I error rate so long as there is 
1) pre-specification of the testing sequence, and
2) there is no further testing once the sequence breaks, 

i.e., the result is not significant
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Comments – fixed sequence method 

• Drawback: If a hypothesis in the sequence is 
not rejected then a statistical conclusion cannot 
be made about the endpoints planned for the 
subsequent hypotheses, even if they have 
extremely small p-values.  
– Suppose, for example, that in a study the p-value for 

the first endpoint test in the sequence is p = 0.250, 
and the p-value for the second endpoint is p = 
0.00001.

– Despite the apparent “strong” finding for the second 
endpoint, no formal favorable statistical conclusion 
can be reached for this endpoint.  
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A fix for this drawback:  Save a little alpha on A 
and distribute the remainder to others

A B

α1 = 0.03 α2 = 0.01
1 1

C

α3 = 0.01

If A is successful, alpha for B becomes 0.01 +1*0.03 = 0.04,
and if B is also successful, then test for C is at level 0.05
(This test strategy is known as the fallback method)
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Comments –fallback method
• One usually assigns the majority of the alpha to 

the first endpoint and the remainder to the 
second endpoint, although other distributions 
are also valid.  

• It is often used when there is another endpoint 
thought less likely to be statistically significant, 
and thus is not designated as the first endpoint.
– However, this second endpoint is of such clinical 

importance that it would be valuable to have an 
unexpectedly robust finding for this endpoint that 
would be statistically interpretable without inflation of 
the Type I error.  
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Comments –fallback method (cont’d)
• The statistical power of the fallback method 

primarily depends on the magnitude of the effect 
on each of the ordered endpoints and alpha 
assigned to them 

• As with the simple fixed sequence method, the 
overall power of the fallback method exceeds 
than that of the Bonferroni test
– because when the earlier endpoints show significant 

results, the method uses larger alpha levels for later 
endpoints than is possible under the Bonferroni 
method.     
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Extension of the fallback method

A B

α1 = 0.03 α2 = 0.01

1 1
C

α3 = 0.01

1/2

1/2

Consider the situation: A and B both fail but C is 
successful

Then A and B can be retested at slightly higher levels
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Gatekeeping test strategy
• Useful for testing the Primary and Secondary families of 

endpoints
• The usual strategy is to test all endpoints in the primary 

family by a method such as  Bonferroni and proceed to 
the secondary family of endpoints only if there has been 
statistical success in the primary family. 

• This allows all of the trial alpha to be used for the 
primary family. Thus, maximizing the study power for 
those critical endpoints.  
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Gatekeeping test strategy
• Consider two families of endpoints (or hypotheses), one 

primary and the other secondary

Primary family
(A, B)

Test at level 
α1 = α
e.g., α = 0.05

Secondary family
(C, D, E)

Test at level 
α2 = α1 - e

“e”  depends on how many endpoints in the primary family 
are successful.  If all endpoints are successful in this family 
are successful then e = 0. 
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The Gatekeeping testing (cont’d)

• Two common gatekeeping test strategies are: 
serial and parallel. 

• Serial strategy is applied when the endpoints of 
the primary family are tested as co-primary 
endpoints.  
– If all endpoints in the primary family are statistically 

significant at the same level α (e.g., α = 0.05), the 
endpoints in the second family are examined  by 
any one of several possible methods (e.g., Holm 
procedure). 

– Else, the secondary endpoint family is not tested.
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The Gatekeeping testing (cont’d)
• Parallel gatekeeping strategy (PGS) is applied 

when the endpoints in the primary family are not 
all co-primary endpoints, and a testing method 
(e.g., Bonferroni or Truncated Holm method) that 
allows the pass-along of alpha from one family 
to the next is specified. 
– In this strategy the second endpoint family is 

examined when at least one of the endpoints in the 
first family has shown statistical significance. 
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An example of PGS with Bonferroni 
tests

• Consider a trial whose primary objective is to 
test for superiority of a treatment to placebo for 
five endpoints: A, B, C, D and E.  

• Primary family F1 = {A, B} and secondary 
family F2 = {C, D, and E}. 

• Statistical plan: 
– Test endpoints A and B in F1 by the Bonferroni 

method at endpoint-specific alpha levels of 0.04 
and 0.01, respectively, with the total initial α = 0.05 
assigned to F1. 

– Test the second family by the Holm procedure with 
whatever amount of alpha is passed along to it.    
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An example of PGS with Bonferroni tests
(cont’d)

• Suppose that for the family F1, the p-values 
for the endpoints A and B are 0.035 and 
0.055, respectively. 

– Then the result for endpoint A is significant, but the 
result for endpoint B is not, leaving alpha of 0.04 as 
unused and alpha of 0.01 as used. 

• Therefore, the total alpha available for testing 
the endpoints in F2 is 0.04 and not 0.05. 
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Regular Holm (also Hochberg) tests 
can’t be used for the primary family

       

A (1o)
Large Effect
α/2

B (1o)
No effect
α

No type I 
error in 
concluding 
A as 
significant 

C (2o)
No effect
α/2

type I error 
rate of α in 
concluding B 
as significant

Type I error 
rate of α/2 in 
testing C

Study-wise error rate = 1 – (1- α) x (1- α/2) 
exceeds α (= 0.07375 when α = 0.05 ) 

Primary endpoints
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Problem with the regular Holm and 
Hochberg tests in the PGS

• Bonferroni method (or any other separable method; 
see, Dmitrienko et al., 2008) has an important 
property of preserving some alpha for testing the 
secondary endpoint family when the result for at least 
one of the endpoints in the primary family is 
statistically significant.

– The endpoint-specific alpha from each test that successfully 
rejects the null hypothesis is summed and becomes the 
alpha available to the secondary endpoint family.

• The conventional Holm and Hochberg tests does not 
have this property because they are alpha-
exhaustive; they lead to non-separable tests. 
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Use of the truncated Holm test in the 
PGS (Dmitrienko et al., 2008)

• The truncated Holm test allows passing of alpha, but the 
calculation of un-used alpha is different than that by a 
Bonferroni based method 

• In the truncated Holm, the critical values for tests are 
convex combinations of the critical values of the original 
Holm test and that of the Bonferroni test 

ci = γ(α/(k – i + 1)) + (1- γ)(α/k),
where, 0 ≤ γ < 1 is the truncation fraction.

– At γ = 0, this construct gives the Bonferroni alpha-
critical value of α/k. 

– The actual procedure for the truncated Holm remain 
the same, except that the above new critical values ci 
are used 
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PGS with the truncated Holm test, K =3 
(primary family)

• Family 1 test:
1) Reject H(1) if p(1) < c1= α/3, else stop testing
2) Reject H(2) if p(2) < c2 =(γ + 2)α/6 after rejecting H(1), 

else stop testing, and
3) Reject H(3) if p(3) < c3 = (2 γ + 1)α/3 after rejecting H(1)

and H(2).
 Alpha saved for Family 2 is:

a) All α when in Family 1 all null hypotheses are rejected
b) α – 2c2 = (1 − γ)α/3 when in Family 1 H(1) is rejected 

but H(2) and H(3) are retained 
c) α – c3 = 2(1 − γ)α/3 when in Family 1 both H(1) and 

H(2) are rejected but H(3) is retained 
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An illustrative example
• Consider treatment-to control comparisons on 

three endpoints in the primary family with the 
control of alpha at the 0.05 level. 
– Test critical values for the conventional Holm are: 

0.05/3, 0.05/2, and 0.05 , and those for the equally 
weighted Bonferroni method are 0.05/3, same for 
each comparison 

– The endpoint-specific alpha levels for the truncated 
Holm with a “truncation fraction” of f =1/2 are:
α1 = (0.05/3)f + (0.05/3)(1-f) = 0.0167 
α2 = (0.05/2)f + (0.05/3)(1-f) = 0.0208
α3 = (0.05)f + (0.05/3)(1-f) = 0.0333 
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An illustrative example (cont’d)

• The unused alphas for passing to 
secondary family are:

(i) 0.05 if all three tests are successful
(ii) (0.05 - α3 ) = 0.05 – 0.0333 = 0.0167, if the 

1st two tests are successful but the last one 
is not

(iii) (0.05 - 2 α2) = 0.05 – 2(0.0208) = 0.0084, if 
the 1st test is sucessful but the other two are 
not.
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Three gatekeeping approaches 
(Dmitrienko et al., 2013)

• Regular gatekeeping strategy: 
– Family 1 tests are “independent” of the of the 

tests in Family 2. 
• Gatekeeping with re-testing 

– Hypotheses in Family 1 can be retested after 
positive outcomes of tests in Family 2

• Gatekeeping with simultaneous testing

H1, H2

Family 1

H3, H4

Family 2
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Gatekeeping tests w. re-testing

PE1 (dose D1)
α/2

Significant 

PE1 (dose D2)
α/2

Not significant 

SE1 (dose D2)
No test 

SE1 (dose D1)
α/2

Primary endpoint outcomes

Secondary endpoints

Primary family tests by
the Bonferroni method

Logical restriction:  SE1 at dose D2 can not be tested if PE1 
at this dose is not significant

Retesting of PE2 at dose 
D2 at level α, if PE1 and 
SE1 at dose D1 are both 
successful

Then the test of SE1 
(dose D2) possible,  if 
retest of PE1 at this dose 
is successful

Consider 2 endpoints (PE1, SE1) and two dose levels
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Gatekeeping tests w. logical restrictions

H1: treatment inferior to 
Control  on A 

H2: treatment not superior 
to control on endpoint A

H3: treatment inferior to 
Control  on endpoint B

H4: treatment not superior 
to control on endpoint B

Test strategy (hierarchical):
If H1 is rejected then test for the family {H2 and H3}, and 
if H3 is rejected then test for H4

Consider the following Sup/NI tests on endpoints A 
and B: Is there a multiplicity issue?
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Will there be FWER control at level 
0.05 if each test is at level 0.05?

• Some thinks: Yes

• Reason usually given is:
– NI tests follow a sequential order, and that the test for 

Sup for each endpoint follows simultaneously after 
the non-inferiority test by the same 2-sided 95% 
confidence interval that establishes NI 
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A simple proof of inflation if each test at 
0.025 (1-sided)

• Consider: D1 = treat. diff. (for A), D2 = treat. diff. (for B), and 
events:

AN = D1 – 1.96*SE(D1) > - δ1 (Reject H1)
As = D1 – 1.96*SE(D1) > 0   (Reject H2)
BN = D2 – 1.96*SE(D2) > - δ2 (Reject H3)
Bs = D2 – 1.96*SE(D2) > 0   (Reject H4)

• Suppose: Treatment is NI to control on both A and B, but is not 
superior to control on A and not superior to control on B. Sample 
size is sufficiently large so that H1 and H3 are both rejected

• Let: E1 = AN As BN (Bs)c; E2= AN As BN Bs; E3= AN (As)c BN Bs
Now, E2 U E3 = (AN BN Bs) = Bs (because Bs is a subset of BN which is 
a subset of AN

• Therefore: FWER = Pr (Bs ) + Pr (E1) = 0.025 + ε > 0.025
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Solution by the Bonferroni gatekeeping 
method

No further tests

Test H1 at 
α=0.05

Is H1 
rejected ?

no

Test H2 at α/2
Test H3 at α/2

Yes; pass all α=0.05

Test H4 at α/2

If only H3 is rejected; pass only α/2

Test H4 at α

If both H2 and H3 
are rejected

If only H2 is rejected

F1 = { H1: for NI test on A }

F2 ={ H2: for Sup test on A; 
H3: for NI test on B}

F3 ={H4: for Sup test on B}.

No test for H4 
because of 
logical restriction

Define families: Bonferroni test 
for family F2
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Solution by the graphical method
Bretz et al. (2009)

α
H1

0
H3

0
H2

½

½

0
H4

½

1

α/2
H2

α/2
H3

0
H4

½

½

1

α
H3

0
H4

1

(a) Original graph (b) Graph after rejecting H1

(c) Graph after rejecting H2 in (b)

See details in Huque et al. (2011, JBS)

½

3α/4
H2

α/4
H4

(d) Graph after rejecting H3 in (b)

1

1

1

1
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Benefits of the Bonferroni or Bonferroni-
based methods

• Simple to explain to non-statisticians 
• A finding that survives a Bonferroni adjustment is 

generally considered a credible trial outcome
• Complex gatekeeping methods simplifies to simple 

useful shortcut methods.
• Its critical values can combine with the critical values of 

alpha-exhaustive methods (e.g., Holm’s) leading to 
(truncated) tests with more power for the primary family

• Confidence intervals computation possible.  (Very much 
needed for benefit-risk assessments)

• Etc.
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Gatekeeping approach w. simultaneous testing

H1  H2 H3  H4

W1α W2α

H1 for (OPP, High Dose)
H2 for (TS, High Dose)

H3 = (OPP, Lower Dose)
H4 = (TS, Lower Dose)

W1 + W2  = 1
1

1

Kordzakhia and Dmitrienko (2012) provide solution to 
this problem on using the Truncated Hochberg 
Procedure under Super Chain Procedures

Family 1 Family 2

OPP = Overall patient 
populations
TS = targeted subgroup
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Use of resampling methods for endpoints 
with high correlations (e.g. ≥ 0.60)

• A popular resampling based step-down procedure:
Step 1: Rejects H(1) associated with p(1) if 

Pr{ min(P1, P2, …, Pm) ≤ p(1) } ≤ α
Step j =  2, …, m: Rejects H(j) associated with p(i) if 

Pr{ min(Pj, Pj+1, …, Pm) ≤ p(j) } ≤ α
Step m: Rejects H(m) associated with p(m) if 

Pr{ Pm ≤ p(m) } ≤ α
 Stop further testing when 1st time condition not met

• Above probabilities calculated from the resampling 
distributions of the minimum P-value test statistics
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Concerns regarding resampling methods for 
primary comparisons of a confirmatory trials

• Results approximate, requiring large sample sizes and 
usually simulations are required to validate the results

• Computation can be difficult (e.g., for time-to-event 
endpoints)

• Strong control of the overall type I error rate is 
achieved under the assumption of subset pivotality 
condition - hard to justify for some cases.

• Permutation based methods also require assumptions. 
• Ref:  

– Westfall and Troendle (2008; multiple testing with minimal 
assumptions)

– Westfall and Young (1993): Resampling based multiple testing
– Huang et al. (2006; Bioinformatics; permute or not to permute)



Additional topics

• Design and analysis issues for trials with 
event type composite endpoints

• Sample size issues for co-primary 
endpoint trials

• Subgroup analyses issues for confirmatory 
trials
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Widespread use of composite event endpoints 
as PEs in clinical trials – some examples

SCOUT (NEJM 2010; 363:  905-917):  ((nonfatal myocardial infarction, nonfatal stroke, 
resuscitation after cardiac arrest, or cardiovascular death)
ACCORD (NEJM 2008; 358: 2545-2559): (nonfatal myocardial infarction, nonfatal stroke, or death 
from cardiovascular causes)
ADVANCE (NEJM 2008; 358: 2560-2572):  [composites of major macrovascular events (death 
from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke) and major 
microvascular events (new or worsening nephropathy or retinopathy)]
LIFE (Lancet 2002;359: 995-1003): (death, myocardial infarction, or stroke)
TIME (Lancet 2001;358: 951-7): (death, non-fatal myocardial infarction, or hospital admission for 
acute coronary syndrome)
NORDIL (Lancet 2000; 359-365): (non-fatal stroke, myocardial infarction, or other cardiovascular 
death)
INSIGHT (Lancet 2000;356: 366-372): (cardiovascular death, myocardial infarction, heart failure, 
or stroke)
HOPE (Lancet 2000;355(9200): 253-9 ): (myocardial infarction, stroke, or cardiovascular death)

ACE (Lancet 1999;353: 2179-84): (stroke, MI or death) 

PRAISE (NEJM 1996;335: 1107-14): (all cause mortality or hospitalization)

CAPRIE (Lancet 1996;348: 1329-39): (ischemic stroke, myocardial infarction, or vascular death) 

PLATO (NENGL J MED 2009; 361(11): 1045-1057):  (death from vascular causes, MI, or stroke)



Setting for an event type composite 
endpoint as a PE

• Manifestation of the disease is complex and 
cannot be captured by a single PE

• Multiple clinically relevant PEs (presumably 
coherent with each other) are needed to capture 
the disease

• Frequency of individual endpoints in the 
composite is small, and one expects only a small 
treatment effect contributed by each component.
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Advantages
• Enables better interpretation of results in the 

presence of complex manifestations of the 
disease

• Reduces the size of the trial and enables the trial 
to be done in a reasonable timeframe, when 
expecting only small treatment effects in each 
component of the composite
– If individual components were tested simultaneously 

(e.g., by the Bonferroni test), when expecting only 
small treatment effects in each component, then such 
an approach would not be practical.   
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Example of sample size reduction

Endpoints
Control
Group 
Rate

#Treatment 
Group
Rate

Efficacy Power
Sample
size/arm

Mortality 15% 13.2% 1.80% 80% 5865
Hospitalization 19% 16.72% 2.28% 80% 4427
Composite 
event rates

34% 29.92% 4.08% 80% 2047
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#NOTE: 12% reduction from the control rate

Alpha = 0.025, 1-sided



Disadvantages

• Efficacy results of component endpoints may not 
go in the same direction, causing difficulties in 
interpretation of the composite endpoint result

• Overall result for the composite  can be driven 
by the less important components which may 
occur more frequently
– when there are null or near null results for 

important components, or worse, when the 
results for important components are in the 
opposite direction.
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Example: Un-interpretable trial results?

Source:  Lubsen et al. (Stat in Med 2002; 21: 2959-2970)
Adjusted p < 0.03 (hospitalization endpoint)



How to address these issues?

• For the purpose of interpreting the composite 
endpoint result , analysis needs to be done for the 
composite endpoint 
– With full disclosure of data of individual components, 

along with relevant analyses of each component, 
showing  appropriate descriptive statistics and graphs 

• For important endpoints, such as death, study 
needs to  be designed and statistical testing 
methodology needs to ensure that there is at least a 
favorable trend in such endpoints for interpreting the 
study findings.

Huque 



Some statistical methods that can 
address these issues
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Methods based on scores 

109Huque 

• A-HeFT trial (African-American Heart Failure 
Trial; J. of Cardiac Failure 2002)

• Hallstrom  et al. A method of assigning scores to 
the components of a composite outcome: an 
example from the MITI trial. Controlled Clinical 
Trials 1992

Good idea for some situations
Scores need to be prospectively defined
Difficulties and issues may arise in defining 

scoring criteria that are clinically meaningful



Composite Scoring System for A-HeFT
J. of Cardiac Failure 2002; 8(3)

Endpoint scored Criteria Score
Death Death from any cause anytime during trial -3

Alive at end of trial 0
Hospitalization First hospitalization for heart failure -1

No hospitalization for heart failure 0
Change in Quality 
of Life at 6 months*

Reduction by 10 or more units =markedly improved +2
Reduction by 5 to 9 units = improved +1
Changed by 4 to 4 units = no change 0
Increased by 5 to 9 units = worsened -1
Increased by 10 or more units = markedly worsened -2
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*NOTE: The Minnesota Living with Heart Failure Quality of Life instrument 
provides a measurement in units. By convention, an increase in units indicates
worsening and a reduction, improvement



Methods that consider prioritized 
clinical outcomes

Pocock  et al. The win ratio: a new approach to 
the analysis of composite endpoints in clinical 
trials based on clinical priorities. European Heart 
Journal 2012
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The method accounts for clinical priorities, i.e, CV deaths are 

considered more important than non-fatal events. 

Statistical properties?

Huque 



The “favor” function
• Consider a CHF trial that compares a treatment 

(T) to control (C) using a composite of death and 
hospitalization

i =1, …, n subjects assigned to treatment T
j =1, …, m subjects assigned to C

• Consider a pair (i, j) where subject i belongs to 
treated group and subject j to the control group 
then a favor function uij is defined as in the next 
slide
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The “favor” function (cont’d)
Assign
a)uij=+1:  (i) : If T favors C for death, or (ii) if T
vs. C comparison NI/NU for death, then T favors 
C on hospitalization
b)uij=-1:  (i) : If instead C favors T for death, or 
(ii) if C vs T comparison NI/NU for death, then 
C favors T on hospitalization
c)uij= 0:  (i) : If C vs T comparisons NI/NU on 
both death and hospitalization

NI = non‐informative, NU = neutral
114Huque 
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Win ratio (Pocock et al.; 2012) 
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A recent article 
by Rauch et al. (Stat in Med 2014)

• If one assumes for simplicity: 1) components are 
independent, 2) each time-to- event endpoint 
follows exponential density, and 3) each patient 
followed to time f0. Then

∆ = w1* (trt. eff. for PE1) + w2* (trt. eff. for 
PE2)

where: w1+ w2 ≠ 1 and influenced by the 
follow-up time f0
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Other methods
• Methods that can rule out treatment harm on a 

serious component  such as death
– Rauch et al. Consistency-adjusted alpha allocation 

methods for a time-to-event analysis of composite 
endpoint. Computational Statistics and Data Analysis 
2014

– Röhmel et al.  On testing simultaneously non-
inferiority in two primary endpoints and superiority in 
at least one of them. Biom. J. 2006

– Huque and Alosh. A consistency adjusted strategy for 
accmodating an underpowered endpoint.  J. of 
Biopharm. Statistics 2012
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Sample size issues for trials 
with co-primary endpoints

Huque 2014 118
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Regulatory definition of co-primary 
endpoints: 

• Two or more specified primary endpoints are 
said to be co-primary, if each (individually) has 
to show statistically significant (that is clinically 
meaningful) treatment benefit at a pre-specified 
significance level of alpha (e.g., alpha = 0.05)

• How serious is the sample size problem
for multiple co-primary endpoint trials?
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Sample size issue for co-primary 
endpoint trials

• No impact on the Type I error rate 
– OK to test each endpoint at the 0.05 alpha 

level
• But, impact on the Power (Type II error)

– Consequence: larger sample size for the trial 
in comparison to a single primary endpoint 
trial
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K = 1 K = 2 K =3 K = 4

Corr = 0.0
Corr = 0.4
Corr = 0.8

Sample sizes/ treatment arm 
Moderate+ (plus) effect sizes in all K co-primaries 

Moderate+ (plus) effect Sizes: (0.40 per unit S.D.) 
Power = 80%, α = 0.025 (1-sided)

Calculations using multivariate normal distribution of the test statistics. 
Equal pair-wise correlations
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Sample sizes/ treatment arm 
moderate effect sizes in all K co-primaries 

Moderate Effect Sizes: (0.30 per unit S.D.) 
Power = 80%, α = 0.025 (1-sided)
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Sample sizes/ treatment arm 
Moderate- (minus) effect sizes in all K co-primaries 

Less than Moderate  Effect Sizes: (0.2 per unit S.D.) 
Power = 80%, α = 0.025 (1-sided)
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0
50

100
150
200
250
300
350
400

Corr
= 0

Corr
= 0.4

Corr
= 0.8

Moderate
minus
Moderate plus

Moderate plus

One of the endpoints has 0.2 per unit S.D. and 
others have effect sizes of 0.4 per unit S.D. 

Trial size = 393/arm, K =3, Power = 80%, 
α = 0.025 (1-sided)
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Case 1: Migraine trial 
Primary efficacy results at 2 hours (ITT)

Endpoint Treatment
N = 364

Placebo
N = 360

Treatment 
Difference

(2)Delta/ 
S.D. P-value

Pain Relief 65.1% 28.3% 36.8% 0.66 <0.001

Photophobia 
free

58.6 36.4 22.2 0.32 <0.001

Phonophobia 
free

61.3 38.3 23.0 0.33 < 0.001

Nausea free 71.4 64.7 6.7 (0.20(1)) NA 0.007(1)

(1)Analysis adjusted for baseline nausea
(2)Observed delta/S.D.
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Case 2: Alzheimer’s trial – mild to 
moderate disease

Primary 
Endpoints

Treatment  Effect
Delta/S.D.
(observed)

2-sided 
P-value

CIBIC Endpoint
(functions of daily 
living)

0.32(1)

0.31
0.0013(1)

0.0019

ADAS.Cog 0.33(1)

0.23
0.0012(1)

0.02

(1) Analysis adjusted for endpoint baseline values

Treatment (n = 196), placebo ( n = 197)
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Comments: Co-primary endpoints
• Limit the number of co-primary endpoints to 

two 

– if clinically acceptable
• Use more than two co-primary endpoints:

– If clinically necessary to do so and

– expected effect sizes are such that trial 
sample sizes are practical
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Roles of subgroup analyses in 
confirmatory trials

• For claim of efficacy for the overall patient population 
(OPP) or for targeted subgroups
– Multiplicity adjustments for Type I error control; sample size 

considerations for the OPP and for the subgroups
• For adding credibility to the evidence that the treatment 

is effective for the OPP 
– If the results for the OPP is significant and at the same time 

results are consistent across various subgroups by baseline and 
other relevant factors

• For limiting the use of the treatment to a sub-population
– Examples: Cozaar for stroke; Brilinta for acute coronary 

syndrome; Valcyte for Cytomegalovirus (CMV) in patients with 
transplants; Diovan for heartfailure, etc.

• For hypotheses generating 
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NEJM 2001, Aug 16, 345:494-502

Consistent
results 
across all
subgroups
analyzed
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Forest plot of 
subgroup
analyses: 

JAMA April 20, 
2006
Clopidogrel 
+ASA
Vs. ASA

Suggestion 
of harm 
in this 
subgroup

Reversal:
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PLATO trial
Ticagrelor vs. Clopidogrel in patients with acute coronary 

syndrome (NENGL J MED 361(11): 1045-1057, Sep 2009)

Odds Ratio

S
tu

dy
 R

ef
er

en
ce

0.63 0.79 1.00 1.26 1.58

Asia + Australia

Cent + Sth_America

Euro+Mid_E+Afr

North America

Summary

Note: Data indicated greater 
use of aspirin in the
North American region 

PE = composite of death from 
vascular causes + MI + stroke

Ticagrelor better Clopidogrel better

Reversal



Closed testing and partitioning 
principles for solving multiplicity 

problems of clinical trials

Huque 2014 132
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Closed testing procedure (CTP)
• Given K elementary hypotheses H1, …, HK , 

consider the 2K -1 intersection hypotheses HJ = ∩jεJHj 
for all non-empty subsets J of {1, …, K}. Each HJ is 
tested at level α or less. 

• An individual null hypothesis Hj is rejected if every 
intersection hypothesis HJ that includes Hj (including Hj
itself) is rejected by its local level α test. This controls 
the FWER in the strong sense at level α (Marcus, Peritz, 
and Gabriel; 1976). 

• A closed testing procedure is α-exhaustive, if the size of 
each intersection hypothesis test equals α, that is, 
P(reject HJ ) = α under the null for all subsets J of {1, 
…, K}. (Grechanovsky and Hochberg; 1999)
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Example: Test of H1 and H2 by CTP

H1 H2H12

Venn diagram for two hypotheses H1 and H2 and their 
intersection H12

Reject H1 If: 
H12 is rejected at level α and also H1 is rejected at level α
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CTPs have good properties 
• CTPs are optimal when FWER has to be controlled. 

(Bauer; SM 1991) 
• CTP by construction is coherent (Gabriel; AMS 1969)

– Because, if Hj is rejected then all intersection hypothesis HJ that 
includes Hj are rejected as well. 

• Coherence avoids interpretation difficulties. E.g., for K = 
2, if H1 is rejected but H12 is not, we would have problems 
in interpreting these results.  The CTPs avoids such 
problems as it implies coherence by construction: 
– It first tests H12, and only if this is rejected, it continues testing 

the individual null hypotheses.
• Sonnemann and Finner (1988):  showed that any non-

coherent multiple testing procedure can be replaced by a 
coherent procedure that never rejects less but may reject 
more hypotheses. Furthermore, any coherent multiple 
test controlling the FWER is a closed test. 



Closed testing method for explaining the 
result of acomposite  (LIFE trial: Lancet 2002)

CV Death, MI, or Stroke    P = 
0.021 (2‐sided)

CV Death or Stroke     
P = 0.0027 

Stroke or MI 
P = 0.046

CV Death or MI
P = 0.45

Stroke Alone
P = 0.001

CV Death Alone 
P = 0.21

MI Alone
P = 0.490

If  P < .05

If  both p < .05
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Partitioning method vs. closed testing

Partitioning method:
• Partition the union of multiple hypotheses into 

disjoint hypotheses
– Each disjoint hypothesis can be tested at the same 

significance level α (e.g., α =0.05)
• A hypothesis H is then rejected if all disjoint 

hypotheses that overlaps with H are rejected
• Example (next slide)
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Example
• Consider partitioning of the 

union of H1, H2 and H3 into 7 
disjoint hypotheses 

• Each test T1 to T7 is at level α
• H1 is rejected if A, B, C and D 

are rejected 
• H2 is rejected if  A, B, E and F 

are rejected
• H3 rejected if A, C, E, and G 

are rejected

Disjoint 
Hypotheses

Test

A: H1 H2 H3 T1

B: H1 H2 K3 T2

C: H1 K2 H3 T3

D: H1 K2 K3 T4

E: K1 H2 H3 T5

F: K1 H2 K3 T6

G: K1 K2 H3 T7

Ki is complement of Hi
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Partitioning method vs. closed testing  

• Standard multiple test procedures derived 
by the closed testing can also be derived 
by the partitioning principle
– Examples:  Holm, Dunnett-Tamhane Step-

down Procedure, Extended Simes, etc

• This was shown by Pär Karlsson (BASS 
2010)
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Closing Remarks
• Modern clinical trials often include complex 

designs for better characterization of risk–benefit 
profiles of study drugs. 
– In this regard, trials include multiple objectives of 

different importance seeking answers to a number of 
specified questions. These answers are generally 
derived from the results of the planned multiple 
comparisons of the new treatment to control on 
multiple primary and secondary endpoints. 

– However, whether the answers to these questions 
can lead to clinically meaningful benefits of the new 
treatments is determined by multiple win criteria 
which introduce multiplicity.
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Closing Remarks (cont’d)

• Addressing multiplicity for these trials may 
require using advanced statistical approaches 
some of which have appeared only in recent 
publications. 

• Confirmatory trials prospectively plan statistical 
strategy for addressing multiplicity using 
methods that are valid and efficient in answering 
questions of clinical importance. 

• In this regard, regulatory agencies generally 
require an upfront statistical analysis plan (SAP). 
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Closing Remarks (cont’d)
• There are many considerations for addressing 

multiplicity in confirmatory trials, but the following 
three are of paramount importance:
1. Defining upfront the clinical win criteria of the trial 

clearly. Statistical results, though significant for 
certain comparisons, may not have clinical utility, if 
they do not fit into the clinically specified win criteria 
of the trial.

2. Adhering to the principle of prospective planning. The 
trial may lack validity if the multiplicity problem and 
their solutions are not worked out in advance.

3. Protecting the strong control of the FWER in making 
claims of treatment benefits for the primary as well for 
the secondary benefits. 
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Thank You 


